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Abstract. Devising effective national-level climate action plans needs a more detailed understanding of the regional distri-

bution of sources and sinks of greenhouse gases. Due to insufficient observations and modelling capabilities, India’s current

carbon source-sink estimates are uncertain. This study uses a high-resolution transport model to examine the potential of CO2

observations over India for inverse estimation of regional carbon fluxes. We make use of four different sites in India that vary

in measurement technique, frequency and spatial representation. These observations exhibit substantial seasonal (7.5 to 9.25

ppm) and intra-seasonal (2 to 12 ppm) variability. Our modelling approach, a high-resolution Weather Research and Forecast-

ing Model combined with Stochastic Time Inverted Lagrangian Transport (WRF-STILT) model, performs better in simulating

seasonal (R2 = 0.50 to 0.96) and diurnal (R2 = 0.96) variability of observed CO2 than the current generation global models

analysed in the study. Representation of local flux variability like biomass burning in the model needs further refinement,

depending on the site location. During the agricultural season, crop biospheric uptake in the Indo-Gangetic Plain region sig-10

nificantly modulates the CO2 variability in the northern Indian stations. Depending on the region and time of the year, the

anthropogenic and biospheric emission components contribute differently to CO2 variability. The choice of emission inventory

in the modelling framework alone leads to significant biases in simulations (5 to 10 ppm), endorsing the need for accounting

emission fluxes, especially for non-background sites. By implementing a high-resolution model, our results emphasise that

observations from Indian sites can be useful in deducing carbon flux information at regional (Nainital) and sub-urban to urban15

(Mohali, Shadnagar, Nagpur) scales. On accounting for observed variability, the global carbon data assimilation system can

thus benefit from the measurements from the Indian subcontinent.

1 Introduction

The global terrestrial ecosystem acts as a significant carbon sink. A decrease in sink capacities accelerates global warming

as a consequence of the increased atmospheric emission fraction (airborne fraction). How the terrestrial carbon sink capacity20

responds to the rate of atmospheric greenhouse increase remains uncertain, implying large uncertainties in future climate
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predictions. Further, significant uncertainties exist in our estimations of the magnitude and spatial distribution of carbon fluxes

between land, atmosphere, and oceans (Friedlingstein et al., 2022). These estimates are particularly critical to devise effective

mitigation plans for climate change. The carbon budget estimation system must sufficiently represent the complex exchange

processes operating at different spatial and temporal scales to address the above key shortcoming.25

India needs an accurate estimation of its carbon sources and sinks to achieve its Nationally Determined Contribution (NDC)

goals (https://unfccc.int, last access: 25 March 2023) through emission reduction. The bottom-up approach is widely used to

estimate carbon fluxes based on our prior knowledge of the processes determining the fluxes, such as vegetation, land types,

and fossil fuel usage statistics. However, these estimates often suffer from large errors due to various factors, including the

reliability of statistical reports, the accuracy of flux estimation approaches, and desired spatiotemporal resolution. An inverse30

modelling framework (top-down approach, Enting (2002)) encompassing atmospheric transport models and observations of

atmospheric carbon concentrations have the potential to improve bottom-up based estimates of the source-sink distribution

of carbon globally (e.g., Rödenbeck et al., 2003; Peters et al., 2007; Inness et al., 2019) and on regional scales (e.g., Gerbig

et al., 2003; Lauvaux et al., 2009; Broquet et al., 2013; Gerbig et al., 2009; Pillai et al., 2016). There have been a few recent

attempts to estimate the carbon fluxes over the South Asian region using inverse modelling techniques (e.g., Patra et al., 2013;35

Thompson et al., 2016; Ganesan et al., 2017; Gahlot et al., 2017). It is recognised that a major source of uncertainty in inverse

estimations is the lack of observational data with sufficient temporal and spatial coverage (Patra et al., 2013; Thompson et al.,

2014).

In-situ observations are essential for the tropics because satellite observations cannot always detect surface variations in

addition to data gaps due to clouds and moist convection. India has recently added a few greenhouse gases (GHG) monitoring40

stations to its observational network (e.g., Tiwari et al., 2014; Lin et al., 2015; Mahesh et al., 2015; Nomura et al., 2021).

High-frequency observations with diurnal and synoptic variations provide information on the regional sources and sinks for

atmospheric CO2, which are influenced by mesoscale atmospheric transport (Law et al., 2002; Gerbig et al., 2003; Geels

et al., 2004; Lin et al., 2004; Lauvaux et al., 2008). CO2 anomalies generated remotely can also affect these observation sites

through horizontal advection. Law et al. (2002) has suggested that the use of high-frequency observation can aid in reducing45

the uncertainty in inverse estimates, similar to using a larger observation network with low-frequency observations. However,

measurements obtained from an observation site close to a variable source or meteorologically complex areas are difficult to

represent in the transport models used for inversions. Owing to these constraints, none of the current generation global carbon

assimilation systems utilises CO2 observations from the Indian region to optimize their models. To utilise the potential of

these observations through inverse modelling, we need to improve our understanding of the processes driving high-frequency50

variability in these measurements (Geels et al., 2004). That is, sufficient improvement in modelling capabilities is required over

the Indian region.

The skill of the model is determined by how well it can simulate the variability in atmospheric CO2 concentration associated

with transport (e.g., advection and vertical mixing) and flux distribution (e.g., anthropogenic emissions and biospheric fluxes).

Most current generation carbon flux estimations over India are derived from global carbon estimates, which utilise coarse-55

resolution transport models (e.g., Rödenbeck et al., 2003; Peters et al., 2007; Inness et al., 2019) for their simulations. However,
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atmospheric CO2 exhibits strong spatiotemporal variations such that the transport models need a horizontal resolution higher

than 30 km to represent the variability (Gerbig et al., 2003). Similarly, local and large-scale convections play a major role in

distributing tracer concentrations (Gerbig et al., 2003) vertically, which is difficult to simulate in tropical regions (Thompson

et al., 2014). Fine-scale features are better resolved when the horizontal resolution of transport models is increased (Geels et al.,60

2007; Tolk et al., 2008; Agustí-Panareda et al., 2019). Considerable representation errors exist when we use coarse-resolution

transport models for inverse optimization over India, and the representation error tends to decrease when we increase the

horizontal resolution (Thilakan et al., 2022). The seasonally reversing monsoon circulation pattern and complex topography

complicate regional atmospheric transport, influencing the vegetation patterns and agricultural practices over the region. Hence,

an adequate representation of the atmospheric CO2 distribution over India relies on a modelling system that can operate at high65

spatial and temporal resolution.

Here, we examine the capability of a high-resolution modelling framework based on the Lagrangian particle dispersion

model (LPDM) to simulate CO2 variability over four different observation sites in India. We follow the receptor-oriented

framework described in Gerbig et al. (2003) using an LPDM called the Stochastic Time-Inverted Lagrangian Transport (STILT)

model (Lin et al., 2003). A receptor-oriented analysis framework was designed to quantify the sensitivity of the atmospheric70

CO2 concentrations (influence functions) at measurement locations (receptors) to the surface fluxes in the upwind regions

or boundary conditions and thereby interpret the atmospheric signatures of the surface processes. These influence functions

(footprints) can be considered equivalent to the adjoint of the Eulerian transport model. This STILT modelling framework

utilises meteorology from an Eulerian transport model, surface fluxes from biospheric models or inventories, and boundary

conditions from global reanalysis products to simulate the atmospheric CO2 concentration at receptor locations. The boundary75

conditions are indented to provide the background and influence of remote fluxes on the observations. In this study, the Weather

Research and Forecasting model (WRF) is used to simulate meteorology at a horizontal resolution of 10 km × 10 km and a

temporal resolution of one hour. Using STILT has the advantage of simulating CO2 variability down to spatial scales that are

slightly smaller than the grid size of the meteorological fields used (Lin et al., 2003; Gerbig et al., 2003). Because it employs a

backward time simulation strategy, it is more computationally cost-effective than an alternative forward time simulation (Lin80

et al., 2003), at least for data-sparse situations with only a few observational sites. The CO2 observations used in this study were

taken from the near-surface using different measurement techniques at different frequencies. We assess the usability of these

measurements in the inverse framework when utilising the high-resolution (e.g., WRF-STILT) modelling system to optimise

carbon fluxes. We quantify the model uncertainties and compare them with those of existing models.

This paper is organised as follows: Sect. 2 briefly describes the modelling framework employed in this study. In Sect 3,85

we provide the details of CO2 measurements and global reanalysis data used in this study. Sect. 4 deals with the methods

used for assessing the model skill in capturing observed variability. Sect. 5 presents the observed CO2 variability across India,

investigating how well STILT and global models could capture these variations. In Sect. 6, we further discuss the potential of

using these observations in the future inverse modelling system, taking into account the current limitations of our modelling

system. The conclusions are presented in Sect. 7.90
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2 Modelling framework

We simulated CO2 concentrations at the measurement locations using the WRF-STILT modelling framework. A detailed

description of the WRF-STILT system can be obtained from Nehrkorn et al. (2010). The STILT is a widely used LPDM to

determine the influence of surface emissions at a receptor location by simulating the transport in the near field (i.e. the surface

that planetary boundary layer (PBL) air has come into contact with before arriving at the measurement location (e.g., Lin et al.,95

2003; Gerbig et al., 2003; Nehrkorn et al., 2010; Pillai et al., 2011; Maier et al., 2022). The STILT model utilises the mean

advection scheme used by the HYSPLIT model (Stein et al., 2015). The turbulent motions are modelled as a Markov chain

process (Lin et al., 2003). The mean wind is represented by interpolating the wind fields from numerical weather prediction

models or reanalysis data (from the WRF model in this study) into the sub-grid location of the particle. STILT simulates the

transport by following the backwards-in-time evolution of an ensemble of particles (representing air parcels of equal mass) from100

receptor locations using mean winds and turbulent motions. The most critical meteorological variables required for trajectory

calculations are vertical profiles of horizontal and vertical wind components (Nehrkorn et al., 2010).

In the STILT model, changes in the atmospheric CO2 concentration, ∆C(Xr, tr) at the observation site at Xr and time tr

can be derived as follows:

∆C(Xr, tr) =

tr∫

t0

dt

∫

V

dx dy dz I (Xr, tr|X, t)S(X, t) (1)105

where S(X, t) is a volume source-sink in units of ppm h−1 and I (Xr, tr|X, t) is the influence function for the receptor

location which quantitatively links sources/sinks to concentrations and has a unit of m−3. The quantification of the time

volume integration of the influence function is achieved by counting the total length of time ∆tp,m,i,j,k that each released

particle p spends in a volume element (i, j,k) during a time step m and normalising to the number of particles released Ntot

(Lin et al., 2003).110

tm+τ∫

tm

xi+∆x∫

xi

dx

yj+∆y∫

yj

dy

zk+∆z∫

zk

dz I (Xr, tr|X, t) =
1

Ntot

Ntot∑

p=1

∆tp,m,i,j,k (2)

The link between surface fluxes F (x,y, t) (in units of mol m−2s−1) and a volume source-sink S(X, t) is established by

diluting the surface tracer flux into an atmospheric column of height h, in the assumption that the turbulent mixing below this

height is strong enough to thoroughly mix the surface flux from ground to h within one model time step m. Here, h is set to

half of the PBL height, and the PBL height is calculated internally by STILT using meteorological inputs provided by WRF.115

This approach is summarised as follows:

S(X, t) =





mair
hρ(x,y,t)F (x,y, t) forz ≤ h

0 forz > h
(3)
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where mair is the molar mass of air and ρ(x,y, t) is the average air density. From the above equations (Eqs. (1), (2) and (3)),

the contribution of emission fluxes from each surface grid cell (i, j) and time step m to the total CO2 enhancement ∆C(Xr, tr)

at receptor location can be obtained as:120

∆Cm,i,j(Xr, tr) =
mair

hρ(xi,yi, tm)
1

Ntot

Ntot∑

p=1

∆tp,m,i,j,kF (xi,yi, tm) = f(Xr, tr|xi,yi, tm)F (xi,yi, tm) (4)

Here, f(Xr, tr|xi,yi, tm) is known as the "footprint" which links the CO2 surface fluxes to CO2 concentration changes at the

observation site as mentioned before. The total CO2 concentration enhancement ∆C(Xr, tr) at the observation site is obtained

by summing ∆Cm,i,j(Xr, tr) over all the grid cells (i, j) and time (m).

We released 100 particles from every receptor location to calculate the back trajectories with a maximum backward time of125

120 h. This period is set by estimating the approximate time required for all particles to exit the model domain. We used the

time-averaged, mass-coupled velocity fields from the WRF model to avoid mass violation in STILT. The initial and boundary

conditions for WRF are obtained from the ERA5 reanalysis dataset of the European Centre for Medium-Range Weather Fore-

casts (ECMWF). The WRF simulations over the domain are generated for 2017. The detailed description of the WRF model set

up over the Indian domain used for this study can be obtained from Thilakan et al. (2022). The performance of the WRF model130

simulations over India was assessed by previous studies (e.g., Hariprasad et al., 2014; Boadh et al., 2016; Sivan et al., 2021;

Mathew et al., 2023), which found it promising. The footprints were calculated based on Eq. (4), which were dynamically

gridded to a maximum resolution of 10 km × 10 km.

The biosphere flux distribution over the domain was generated using a biospheric model called Vegetation Photosynthesis

and Respiration (VPRM) model (Mahadevan et al., 2008). The VPRM model calculates Gross Ecosystem Exchange (GEE) and135

ecosystem respiration (Reco) using WRF meteorological fields and MODIS (Moderate Resolution Imaging Spectroradiometer)

satellite products. Biospheric fluxes are generated at horizontal resolution 10 km × 10 km over the domain. These fluxes

were utilised to calculate the atmospheric CO2 contribution by the biosphere over the receptor locations (termed as CO2bio ).

Anthropogenic CO2 fluxes were prescribed from three different inventories to represent anthropogenic contribution and also

to examine the impact of emission differences in CO2 simulations over the Indian domain. STILT derives the atmospheric140

CO2 enhancement due to anthropogenic fluxes (CO2ant ) at receptor locations using Eq. (4). Anthropogenic emission fluxes

from Emissions Database for Global Atmospheric Research (EDGAR), Open-source Data Inventory for Anthropogenic CO2

(ODIAC) and Integrated Carbon Observation System - Global anthropogenic CO2 emissions (hereafter referred to as ICOS)

were used in this study. The EDGAR inventory (v7.0; Crippa et al., 2018, 2022) provides anthropogenic fluxes at a horizontal

resolution of 0.1°×0.1°for every year. ODIAC (v2020; Oda and Maksyutov, 2020; Oda et al., 2018) has a higher spatial145

resolution of 1 km× 1 km but is available only at a monthly timescale. ICOS (v2019; Karstens et al., 2019; Janssens-Maenhout

et al., 2019) is developed based on EDGAR v4.3 and British Petroleum statistics with a horizontal resolution of 0.5°×0.5°and

a temporal resolution of hourly. All these data sets were interpolated into model resolution, conserving mass. The model

included the effect of global CO2 variability over the domain from boundary conditions (also known as background signal,

CO2bck ) and was added to the local CO2 mole fraction (resulting from local fluxes) within the model domain to compare with150

the observations. In this study, we have used two different global reanalysis products separately as boundary conditions to
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understand the influence of boundary conditions on total CO2 mole fraction. We used Jena CarboScope (version: s10c_v2020;

Rödenbeck et al., 2003) and ECMWF-Copernicus Atmosphere Monitoring Service (CAMS, Version: EGG4; Agustí-Panareda

et al., 2023) as boundary conditions for this study (see Sect. 3.2).

That is, the total atmospheric CO2 concentration (atmospheric CO2,tot) was calculated by adding the background (CO2,bck),155

biospheric (CO2,bio) and anthropogenic (CO2,ant) terms together to compare with the observations. The atmospheric CO2 con-

centration at the measurement location is given by:

CO2tot = CO2bck + CO2bio + CO2ant (5)

Atmospheric CO2 mixing ratios at the measurement locations were retrieved at a temporal resolution of three hours. Since

we used two different boundary conditions and three different anthropogenic fluxes for the WRF-STILT simulations, we have160

a set of six simulations over each observation site. WRF-STILT simulations are hereafter referred to as simply STILT simu-

lations in this article. The simulations with CarboScope (CS) as background are represented as STILT-CS-EDG (EDGAR as

anthropogenic flux), STILT-CS-ICOS (ICOS as anthropogenic flux) and STILT-CS-ODI (ODIAC as anthropogenic flux) in this

manuscript. Similarly, simulations with CAMS EGG4 (EGG4) as background are represented as STILT-EGG4-EDG (EDGAR

as anthropogenic flux), STILT-EGG4-ICOS (ICOS as anthropogenic flux) and STILT-EGG4-ODI (ODIAC as anthropogenic165

flux).

3 Data

3.1 CO2 observations over India

We used atmospheric CO2 observations for 2017 from four measurement sites located at Mohali, Nainital, Shadnagar and

Nagpur (see Fig. 1) to assess their temporal variability. Also, we examine how well the STILT simulations capture these170

variations.

We used continuous hourly measurements of CO2 using the PICARRO CRDS (Cavity Ring-Down Spectroscopy) instrument

at the Mohali (MHL) station. Atmospheric CO2 mole fractions are measured at 20 m height above ground level. The measured

CO2 mixing ratios have an overall uncertainty calculated based on the root mean square propagation of individual uncertainties,

such as the accuracy error of gas standard (2%), 2σ instrumental precision error (0.1% for CO2), and flow reproducibility175

(2%), resulting in a measurement uncertainty less than 4%. The limit of detection for CO2 is reported to be better than 0.5 ppm

(Chandra et al., 2017). MHL is situated in a suburban area (30.67° N, 76.73° E; 310 m a.s.l) in the northwestern part of the

Indo-Gangetic plain (IGP), close to Chandigarh city (Sinha et al., 2014; Pawar et al., 2015). The instrument facility is housed

inside the campus of the IISER Mohali. More details about the measurement techniques employed for MHL observations are

available from Chandra et al. (2017). MHL has the proximity of three cities with more than 100,000 population at a distance of180

a few kilometers in the northeast direction, including Chandigarh, with nearly one million population. STILT footprints show

that the predominant wind direction towards the observation site is northwest, except during the monsoon season, in which the

wind comes in the southeast direction (Fig. S1). The northwest region of the MHL is dominated by agricultural and other rural
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land use patterns (Kumar and Sinha, 2021). Agricultural emission activities like residue burning can be expected in this region

during April-May and October-November period (Sinha et al., 2014). Local influences on the measurements from the residents185

of IISER Mohali are expected to be minimal since the instrumentational facility is situated in the downwind direction.

Weekly flask measurements of atmospheric CO2 mole fractions from the Nainital (NTL) observation site are used here

(Terao et al., 2022). NTL observation site is located at the Aryabhatta Research Institute of Observational Sciences (ARIES)

(29.36° N, 79.46° E; 1940 m a.s.l, Nomura et al. (2021)). Since the measurement location is near the Himalayan mountain

range, NTL is considered as a background site representing north Indian GHG distribution with some influence from anthro-190

pogenic activities, including biomass burning during spring and autumn months when air mass stays for a longer duration over

northern India (Sarangi et al., 2014; Nomura et al., 2021). The inlets for the air samples are mounted at a height of 7 m above

ground level. Weekly flask samples were collected at 14:00 local time and transported to the Center for Global Environmental

Research (CGER) laboratory, National Institute for Environmental Studies (NIES), Japan, for gas analyses. CO2 analyses were

done using a non-dispersive infrared analyzer (NDIR; LI-COR, LI-6252) with an analytical precision of 0.03 ppm against the195

NIES09 scale and the NIES09 and NOAA scales have a difference ranging from 0.04 to 0.09. More details are available at

Nomura et al. (2021). Near-field contributions of the NTL station are mainly from the northwestern region of the station except

during the summer monsoon (JJA) period (Fig. S2). During the winter period (DJF), the influence region covers the southeast

of the site as well.

The observation site Shadnagr (SDN) is at the National Remote Sensing Sensing Center (NRSC), Shadnagar (17.09° N,200

78.21° E; 648m a.s.l). Shadnagar is a suburban station situated about 65 km from Hyderabad (Mahesh et al., 2015; Sreenivas

et al., 2016). Measurements are carried out using Los Gatos Research’s Greenhouse Gas Analyser (model: LGR-GGA-24EP) at

an interval of 1 s with precision and accuracy of 0.078 ppm and 0.101 ppm respectively (Mahesh et al., 2015; Sreenivas et al.,

2016). The LGR-GGA instrument uses enhanced off-axis integrated cavity output spectroscopy (OA-ICOS) technology. A

downward-facing inlet is mounted 10 m above ground level to provide ambient airflow to the instrument. Mahesh et al. (2015)205

provides a detailed description of the instrument and the calibration procedure. This study uses the daily average values of

these observations available from https://bhuvan-app3.nrsc.gov.in/data/download/index.php (last access: 12 December 2022).

The near-field influence regions of SDN vary with seasons (Fig. S3). The influence region covers the northeast of the site

during post-monsoon (SON) and winter (DJF) seasons. The dominant influence on the SDN comes from the west during the

summer monsoon period (JJA) and from the southeast during the pre-monsoon season (MAM).210

We have also used continuous atmospheric CO2 measurements from Nagpur (NGP) installed at NRSC, Regional Centre

office (21.15° N, 79.15° E; 312 m a.s.l). NGP is located 7 km west of Nagpur city centre, one of the largest cities in central

India, with a population of around 2.5 million. The site’s region (Deccan plateau of the Indian peninsula) includes large

industries and coal-powered power plants (Kompalli et al., 2014; Shaeb et al., 2020). Based on our STILT footprints, the major

influence on the CO2 variability at NGP comes from the west (summer, JJA), northeast (post-monsoon, SON), and north-215

west (pre-monsoon, MAM) of the observatory (Fig. S4). NGP utilises a high-precision non-dispersive infrared gas analyzer

(LICOR LI-7500) instrument mounted at 8 m height from ground level to measure the atmospheric CO2 concentrations. Daily

average values of these measurements, available from https://bhuvan-app3.nrsc.gov.in/data/download/index.php, (last access:
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Figure 1. Location of CO2 observation sites used in the study

12 December 2022), are used in this study. Both SDN and NGP observations are carried out as part of the Climate and

Atmospheric Processes of the ISRO-Geosphere Biosphere Programme (CAP-IGBP).220

3.2 Global Reanalysis products

We also compared CO2 observations with three global reanalysis products to examine the model-data mismatches at these

stations. These products are optimized with available observations of CO2 (e.g. data from surface monitoring stations, total

column retrievals from satellites, aircraft missions, ship cruises, and AirCore balloon sounding) from different parts of the

world. None of these products utilises in-situ observations from India. We used atmospheric CO2 concentration from Car-225

bonTracker (CT2019B; Jacobson et al., 2020), CarboScope (s10c_v2020; Rödenbeck et al., 2003; CarboScope, 2020) and

ECMWF CAMS (EGG4; Agustí-Panareda et al., 2023; Copernicus Atmosphere Monitoring Service, 2021) to compare with

the observations. All of these reanalysis products differ in their spatial and temporal resolutions. CarbonTracker has a horizon-
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tal resolution of 3°× 2°and a temporal resolution of 3 hours with 25 vertical levels. CarboScope is a comparatively coarser

model with a horizontal resolution of 5°× 3.8°and a temporal resolution of 6 hours with 19 vertical levels. Among these prod-230

ucts, CAMS EGG4 has the finest spatial resolution with 0.75°× 0.75°in the horizontal direction with 25 vertical levels and a

temporal resolution of 3 hours. To compare with the MHL, SDN and NGP observations, we used global model simulations

from the model’s first vertical level for CarbonTracker and the 1000 mb pressure level for both CarboScope and EGG4 prod-

ucts. Since the NTL site is situated at ∼ 800 mb height, we compared the observations with CarboScope and EGG4 products

at 800 mb vertical level and with the first model level for CarbonTracker.235

4 Assessment of modelling skill

We have derived different statistical indices to examine the performance of the model simulations to predict the CO2 variability.

To quantify the error distribution between model (P ) and the observation (O), we have calculated the Root Mean Square Error

(RMSE) and the Mean Absolute Error (MAE) between the model simulations and observations.

To separate the systematic and unsystematic components from the RMSE, we have used the following method proposed by240

Willmott (1981). Systematic RMSE is obtained as:

RMSEs =

√√√√ 1
n

n∑

i=1

(P̂i−Oi)2 (6)

and the unsystematic RMSE as:

RMSEu =

√√√√ 1
n

n∑

i=1

(Pi− P̂i)2 (7)

where P̂i = a + bOi245

Here a and b respectively are the intercept and slope of the least squares regression. The systematic difference for a ’perfect’

model is expected to be very close to zero, while the unsystematic difference remains close to the value of RMSE. Based on

Willmott et al. (2012), we have also computed the refined index of agreement (dr) as follows:

dr =





1−

n∑

i=1

|Pi−Oi|

c

n∑

i=1

|Oi−O|
, when

n∑

i=1

|Pi−Oi| ≤ c

n∑

i=1

|Oi−O|

c

n∑

i=1

|Oi−O|
n∑

i=1

|Pi−Oi|
− 1, when

n∑

i=1

|Pi−Oi|> c

n∑

i=1

|Oi−O|

(8)

Here the constant c is set to 2 (Willmott et al., 2012). The dr values can range from -1 to 1. It indicates the sum of error250

magnitudes between predicted and observed values relative to the sum of observed deviations around the observed mean. For
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example, dr = 0.5 indicates that the sum of the model-observation mismatch is half the sum of the observed variability around

the mean. i.e. dr gives a relative magnitude of the model error compared to the variance of the observations.

5 Results

5.1 Observed CO2 variability over India255

To assess the CO2 variability over India during 2017, we analysed in-situ observations of atmospheric CO2 from four different

sites (see Sec. 3.1).

MHL observations show strong variability due to its proximity to urban areas (see Fig. 2). MHL has hourly observations, and

we have separated the daytime values (11:00-16:00 Local time) to distinguish the influence of the nocturnal boundary layer on

observations (see Fig. 2). The annual mean of hourly atmospheric CO2 concentration at MHL (whole day) during 2017 is 428.8260

ppm with a standard deviation (σ) of 26.6 ppm. For the daytime, the annual mean CO2 is approximately 20 ppm less (408.3

ppm) than all-time, with a variability (σ) of 11.6 ppm. Observations show strong diurnal variability (σ = 14.7 ppm) with up to

40 ppm difference between the maximum and minimum concentrations during the early morning (06:00 LT) and the afternoon

(15:00 LT), respectively (Fig. S5). Due to strong mixing, variability in CO2 concentration is less (σ ≈ 12 ppm) during daytime

(12:00-15:00 LT) compared to the nocturnal variability of 19-32 ppm (see Fig. 3). A similar reduction in CO2 variability can265

be seen at 09:00 LT during May-August (Fig. S6) due to a well-established convective boundary layer with strong mixing.

Nocturnal CO2 variability during March-May is less compared to other seasons. Other than this, MHL observations do not

show considerable differences in their diurnal cycle among seasons (Fig. S6). Since most of the inverse models, which target

to retrieve surface-atmosphere exchange fluxes from in-situ observations, use daytime measurements, we carry out the rest of

our analysis for MHL based on daytime values. Monthly mean values of daytime observations show that MHL exhibits strong270

seasonal variability (σ = 9.2 ppm) with approximately a 32.9 ppm difference between maximum and minimum values (see

Fig. S7). Maximum intra-month variability is found during January, September, November and December, with a standard

variability of 8-12 ppm (Fig. 2). On a monthly scale, lower values are seen during February (397.9 ppm) and August (391.2

ppm) and higher values during May (413.5 ppm) and November (424 ppm) (Fig. S7). As expected, the atmospheric CO2

concentration decreases from June onwards due to the enhanced biospheric activity associated with summer monsoon rainfall275

(Fig. S7). However, we find high CO2 concentrations at MHL during November, which can be attributed to the agricultural

waste-burning activities prominent around this region at this time of the year. A detailed discussion on the influence of biomass

burning on CO2 concentration over MHL is provided in Sec 6.1. In general, measured CO2 concentration over MHL shows

considerable influences from local fluxes (see Fig. S8).

Weekly observations from NTL also show strong seasonal variations (σ = 7.5 ppm) in CO2 concentrations (Fig. 4) with a280

difference of up to 25 ppm, between the maximum (412.8 ppm) and minimum (387.9 ppm) concentrations during April and

September respectively. The observations show an annual mean of 401.6 ppm with a variability reaching 8.4 ppm during 2017.

Considerable intra-month variations at NTL are observed during August, October and December with the variability of ∼ 6
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Figure 2. CO2 monthly variations over MHL during 2017. Observed CO2 variability during daytime (11:00 - 16:00 local time) is shown in

comparison with (a) STILT-CS simulations, (b) STILT-EGG4 simulations and (c) global reanalysis products.

Figure 3. CO2 diurnal cycle over MHL during 2017 is shown in comparison with (a) STILT-CS simulations, (b) STILT-EGG4 simulations,

and (c) global reanalysis products. Note that STILT provides output only every three hours. Similarly, EGG4 and CarbonTracker provide

outputs at a three-hour resolution and CarboScope at a six-hour resolution.
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Figure 4. CO2 time series of weekly observations (14:00 local time) at NTL with (a) STILT simulations. Blue (STILT-CS) and red (STILT-

EGG4) curves represent the ensemble average of the STILT simulations using different anthropogenic fluxes. Shaded regions represent the

range of the model simulations. (b) Global reanalysis products.

Figure 5. CO2 monthly variations over NTL during 2017. Observed CO2 variability is shown in comparison with (a) STILT-CS simulations,

(b) STILT-EGG4 simulations and (c) global reanalysis products.

ppm (Fig. 5). In August, CO2 concentrations show a sharp decrease in the concentration of ∼ 18 ppm from previous values at

the beginning of the month (∼ 408 ppm, see Fig. 4).285
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Figure 6. CO2 monthly variations over SDN during 2017. Observed CO2 variability is shown in comparison with (a) STILT-CS simulations,

(b) STILT-EGG4 simulations and (c) global reanalysis products.

The annual mean of daily SDN observations is 399.6 ppm during 2017 with a standard deviation of 6.2 ppm (Fig. 6). At

SDN, measurements show a seasonal CO2 variability of 4.4 ppm, with two peaks during April (404.7 ppm) and October (405.6

ppm). The lowest concentration is observed during July (390.8 ppm), with a difference of 14.8 ppm from the highest monthly

concentration (Fig. S9). In general, SDN observations have not shown much intra-month variability (σ ≈ 2 ppm, see Figs. 6

& S10) except during the period from August to October (σ ranges from 5.2 to 8.3 ppm). Only daily mean observations from290

SDN are available for analysis, not hourly data as desired.

The CO2 measurements at NGP during 2017 show an annual mean of 415.2 ppm, with a variability of 9.5 ppm (Fig. 7). NGP

observations show seasonal variability (σ = 7.7 ppm) with two maxima and one minimum value with ∼ 22 ppm difference

between these peaks (Fig. S11). Enhanced CO2 concentrations are observed during May (426.0 ppm) and October (425.6 ppm).

In July, the NGP observations show lower concentrations (404.14 ppm) than the rest of the period. A sharp reduction of CO2295

concentration (∼ 13 ppm) is found from October to December (see Figs. S11-S12). Mostly NGP CO2 observations indicated ∼

4 ppm variability within a month (see Figs. 7 & S14), except in June (6.4 ppm), September (9.8 ppm) and October (7.6 ppm).

Here also, we only have access to daily mean observations from NGP, not to hourly data.

5.2 Comparison between Observations and WRF-STILT model Simulations

We assessed how well the STILT model simulations agree with observed CO2 variability. For the comparison, we used obser-300

vations from all four stations described in Sect. 3.1 and a set of six STILT CO2 simulations (see Eq. 5) as described in Sect.

2.
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Figure 7. CO2 monthly variations over NGP during 2017. Observed CO2 variability is shown in comparison with (a) STILT-CS simulations,

(b) STILT-EGG4 simulations and (c) global reanalysis products.

Figure 2 (see a-b) shows the comparison of MHL daytime observations during 2017 with the STILT simulations. Overall,

STILT simulations capture the observed daytime variations reasonably well, with slight overestimation for STILT-CS simula-

tions and slight underestimation for STILT-EGG4 simulations. Similar to observations, STILT simulations during March-July305

show less intra-month variability. The maximum variability is found during the winter months. A detailed discussion on the

differences in CO2 simulations while using EGG4 and CarboScope as the initial and boundary conditions is provided in Sect.

6.3. STILT simulations with ICOS anthropogenic fluxes showed higher variability (σ ≈ 7.3 ppm) than the other simulations.

Though STILT simulations capture the seasonal CO2 variability in monthly averaged daytime values over MHL (see Fig.

S7), the models failed to represent a sharp decline in CO2 concentration during December. This may be due to the increased310

biospheric uptake by Rabi crops during this period (see Sect. 6.2). At the same time, monthly averaged values of daytime

observations show a second dip in February, which is captured reasonably well by the STILT simulations (Fig. S7). The

simulations could reasonably reproduce the biospheric uptake in August by showing the lowest CO2 concentration in August,

similar to observations. The correlation coefficient between monthly averaged observations and STILT simulations varies

between 0.86 to 0.89 (STILT-CS) and 0.76 to 0.87 (STILT-EGG4). At a monthly scale, STILT-EGG4 simulations underestimate315

the seasonal cycle over the MHL (RMSE: 6.7 - 10.0 ppm), while STILT-CS simulations show an overestimation (RMSE: 8.2

- 11.5 ppm). The annual averaged diurnal CO2 concentration shows a good correlation (see Fig. S5) between observation and

STILT simulations (0.97-0.99). But there is a significant bias in the STILT-simulated diurnal cycle (see Fig. S5), which is

higher for STILT-EGG4 simulations (7.0-18.5 ppm) compared to STILT-CS simulations (5.4-8.2 ppm). The estimated bias is

small during summer (MAM) compared to other seasons (Fig. S6). Observations and STILT simulations show less variability320
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Figure 8. An overview of the performances of different models (see Sect. 4). Bar plots represent the different RMSE (in teal), systematic

RMSE (RMSEs, in lime green) and unsystematic RMSE (RMSEu, in orchid) values estimated for each station. MAE (•), observed standard

deviation (×××) and model standard deviation (+++) are overlied on barplots. The black and blue lines represent the correlation coefficient and

index of agreement values, respectively. (a) Mohali (b) Nainital (c) Shadnagar (d) Nagpur
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during daytime (12:00-18:00) compared to other periods (Fig. 3), also showing a good model-data agreement during daytime

(Figs. 3 & S5).

Figure 8 summarises the statistical indices (see Sect. 4) estimated for assessing the model skills. At the MHL station,

STILT CO2 daytime simulations show a standard variability (Fig. 8a) ranging from 5.3 - 7.3 ppm during 2017, lower than the

observed standard variability (11.6 ppm). RMSE for STILT simulations shows a maximum of 13.6 ppm (STILT-CS-ICOS) and325

a minimum of 10.4 ppm (STILT-EGG4-ICOS). MAE values follow the same pattern as RMSE with reduced magnitude. STILT

simulations show a reasonable correlation with observations with coefficient values ranging from 0.53 (STILT-EGG4-EDG)

to 0.61 (STILT-CS-ODI). The index of agreement estimated for MHL varies from 0.44 (STILT-CS-ICOS) to 0.66 (STILT-

CS-ODI), indicating that the error values have a magnitude less than or equal to the variability of observations. Analysis of

these indices for different months indicates that STILT has comparatively better prediction capability in summer (March-June)330

than the rest of the period (see Additional Material, Fig. AM5). The above results show the models’ difficulty reproducing

mixing during monsoon and winter. An inadequate representation of biospheric flux activities in the model can also result in

observation-model mismatches. The model skill indices estimated for November are poor owing to the likely misrepresentation

of variability associated with biomass burning during these months (Sinha et al., 2014; Pawar et al., 2015).

At NTL, STILT simulations captured the CO2 variability reasonably well, except in the winter period (Figs. 4-5). An offset of335

5 ppm is used in STILT-CS simulations at NTL to minimize the consistent overestimation by the model (i.e. 5 ppm is subtracted

from the initial CO2bck component). A sharp reduction in observed CO2 concentration from August (Fig. 4) was not captured

by the models (see Sect. 6.2 for a detailed discussion). Noticeably STILT-EGG4 simulations showed an underestimation of

CO2 values from January to May. The simulations have a standard deviation of ∼ 6 ppm (6.2 - 7.1 ppm) in CO2 concentration

during 2017 which is lower than the observed standard deviation (Fig. 8b). The RMSE estimated for STILT simulations over340

NTL varies between 7.3 to 9.0 ppm. STILT simulations show a reasonable correlation with the observations with a correlation

coefficient of ∼ 0.6, except for simulations using ICOS anthropogenic emission fluxes. We get an index of agreement of ∼ 0.5,

indicating that the magnitude of STILT model error is half that of the observed variations about the observed mean at NTL.

Comparison of CO2 observations with the model simulations at SDN shows that the STILT models can predict the seasonal

cycle very well (see Figs. 6 & S9) with an RMSE of ∼ 4 ppm and correlation ranging from 0.75 to 0.87. Like NTL, we345

reduced an offset of 20 ppm in STILT-CS simulations and 5 ppm in STILT-EGG4 simulations to correct the initial CO2bck

component. STILT reasonably reproduces the observed intra-month variability except from August to October (Figs. 6 & S10).

For SDN, the standard deviation of STILT simulations is higher than the observations (6.2 ppm) and ranges from 6.2 to 8.5

ppm. Estimated RMSE values for STILT simulations are comparatively low at SDN and range from 6.2 to 7.2 ppm (Fig. 8c).

MAE values vary from 4.3 to 5.5 ppm and follow a similar pattern as RMSE. STILT simulations show a reasonable correlation350

(0.55-0.67) with the observations at SDN. But the index of agreement is close to zero for two simulations (STILT-EGG4-

ODI and STILT-EGG4-ICOS), indicating a model error in the simulations as high as observational variability. All STILT

simulations show less model skill from August to November. STILT-EGG4 simulations show comparatively less model skill

during January-May (see Additional material Fig. AM6).
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STILT simulations at NGP capture the observed seasonal variability except for the winter season (Figs. 7 & S11). The355

models represent the seasonal cycle from March to October over NGP with a correlation coefficient of ∼ 0.97 and RMSE of ∼

9 ppm. We reduced an offset of 15 ppm in STILT-CS simulations. The STILT simulations overestimate the winter variability.

Also, the intra-month variability at NGP is overestimated during winter (Figs. 7 & S12). Notably, the observed decrease in

CO2 concentration during the summer monsoon season is well-captured by STILT (Figs. 7 & S11). But the increase in the CO2

concentration in STILT simulations during winter months (November-February) is absent in CO2 observations over NGP (Fig.360

S11). The skill indices for the NGP station show that the standard deviation of STILT simulations (10.1-17.9 ppm) is higher

than observed standard deviations (Fig. 8d). Also, higher RMSE (10.5-17.5 ppm) are estimated for STILT simulations at NGP.

Model simulations show very poor correlation coefficient values and index of agreement values at the NGP region for 2017. We

obtained a better observation-model agreement when excluding winter months (November-February) (see Additional material

Fig. AM7). Analysis of model skill indicates that the June-August period has low RMSE, which can be associated with strong365

mixing by monsoon winds (see Additional material Fig. AM8).

5.3 Comparison between Observations and Global Reanalysis products

We compared observations with three global reanalysis products (CarbonTracker, CarboScope and EGG4) described in Sect.

3.2. The global reanalysis products (except EGG4) could not capture the seasonal variability in CO2 over MHL (Fig. S7). The

intra-month variability is less in daytime simulations of global models (Fig. 2) except for EGG4 simulations during winter370

months (November-February). CarbonTracker and CarboScope show much lower seasonal and intra-seasonal variability over

MHL (Fig. S7). CarbonTracker exhibit diurnal CO2 variability with a significant underestimation (Fig. S5). EGG4 captured the

diurnal variability reasonably well, with a considerable nocturnal bias (Fig. S5). Note that the EGG4 has the highest spatial and

temporal resolution among the global reanalysis products used in this study. Also, long-range transport has a strong influence

on the MHL site (Pawar et al., 2015), which might be contributed to EGG4’s better performance. The inter-model differences375

in intraseasonal variability are large over MHL (Fig. 2), with the standard deviation ranging from 1.9 (CarboScope) to 9.8 ppm

(EGG4). The RMSE for global model simulations varies from 10.2-12.0 ppm with correlation coefficients ranging from 0.36-

0.52 (Fig. 8a). While we consider the index of the agreement, EGG4 show lower values (0.47) compared to other products,

indicating that the magnitude of the error is approximately half of the observed variations.

CarboScope and CarbonTracker also did not capture the seasonal variability in CO2 concentration at NTL. Though it un-380

derestimated the variability, EGG4 showed good agreement with the seasonal variations in observations (see Fig. 4). These

reanalysis products show significant differences in CO2 variability with standard deviations varying as 1.8 ppm (CarboScope),

4.4 ppm (CarbonTracker) and 6.9 ppm (EGG4). The observed standard deviation was higher than the standard deviation in

these products (Fig. 8b) except for EGG4. EGG4 has the maximum RMSE (11.4 ppm) among all products. CarbonTracker

also shows a higher RMSE with 10.6 ppm than CarboScope (8.8 ppm). CarboScope and EGG4 models show high correlation385

values (∼ 0.8) compared to CarbonTracker simulations. EGG4 has a very low index of agreement compared to other model

simulations, which indicates that the error in the model simulations is very high compared to the observed variability.
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The standard deviation of EGG4 (12.4 ppm) simulations is higher than the observed standard deviation at SDN. But Carbon-

Tracker and CarboScope predicted variability lower than that of the observation (Fig. 8c). EGG4 captured the seasonal cycle

over SDN reasonably well but shows high positive bias reaching up to ∼ 20 ppm during January-May (Fig. S9). CarbonTracker390

and CarboScope could not capture the seasonal variability over SDN. The intra-month variability was also poorly represented

(Fig. S10) by these products. EGG4 shows the highest RMSE (13.7 ppm) among the global models. The correlation of reanal-

ysis products with SDN observations is low (0.24-0.32) except for EGG4 (0.56) simulations. But the index of agreement is less

than zero for the EGG4 product, indicating the presence of noise in the simulations.

Among global models, EGG4 shows better agreement with the observations at NGP though the variability compared to395

observations is very high (Fig. 7). The decline in CO2 concentration during the summer monsoon season is captured by the

EGG4 model (Figs. S11-12). EGG4 shows good agreement with the monthly averaged observations at NGP. But CarbonTracker

and CarboScope do not capture the variability in the seasonal cycle well. The standard deviation of EGG4 (14.7 ppm) at

NGP is higher than the observed standard deviation (Fig. 8d). But the standard deviations of CarboScope (2.7 ppm) and

CarbonTracker(3.4 ppm) are lower than the observed standard deviation. Estimated RMSE at NGP varied from 9.3 to 11.2400

ppm. Similar to STILT simulations, global model simulations also show very poor correlation coefficient values at NGP for

2017.

6 Discussions

Here we further explore the shortcomings that need to be addressed to use potential CO2 observations from India for inverse

optimization. Three of the four observation sites used in this study (MHL, SDN, NGP) are situated near cities and are char-405

acterised by large intra-seasonal variability. Observations from all these four sites show strong seasonal variations in CO2

concentrations (see Sect. 5.1). Typically, the highest CO2 concentrations are observed during the April-May period and the

lowest values are observed during July-September. The seasonal decrease in CO2 concentration is associated with the increase

in biospheric uptake owing to monsoon rainfall (see Sect. 6.3). The seasonal progression of the biospheric uptake across India

can also be seen in the observations. That is, observations from the northern part of India (MHL, NTL) show the seasonal410

troughs in CO2 concentrations approximately one month after the seasonal troughs in southern Indian stations (SDN, NGP).

This time lag in ecosystem uptake for northern Indian sites is caused by the monsoon trajectories that result in different arrival

times for precipitation across India. Along with the seasonal variations, these observations (except NTL) are also characterised

by strong small-scale variability associated with local flux variations. It is thus challenging for current models (see Sect. 5.3)

to utilise them for inverse optimization. Using the STILT model has improved the capabilities in simulating these fine-scale415

variabilities. However, we must critically examine how well our modelling system can utilise these observations to deduce

optimal information on underlying fluxes at different spatial and temporal scales. The major implications of our results are

discussed here, with the interest of further improving the carbon data assimilation approaches.
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6.1 Influence of biomass burning on CO2 variability

Agricultural residue burning makes up the major share of biomass burning across India (e.g., Kumar et al., 2011). So the420

spatiotemporal extent of biomass fires over India closely follows the area and period of crop harvest. Thus, a greater extent of

biomass burning is expected for pre-monsoon and post-monsoon seasons than for the monsoon season. Considerable aerosols

and trace gas emissions are associated with these open agricultural residue burning in Indo Gangetic Plains (IGP) and Central

India (Bhardwaj et al., 2016; Ravindra et al., 2022; Deshpande et al., 2023). For example, the CO2 emission estimated from

biomass burning over Punjab (a northern Indian State in which MHL is located) is 15.62 MtCO2yr-1 for the year 2017 (Desh-425

pande et al., 2023). Among the Indian states, Punjab has one of the highest rates of agricultural burning (Sahu et al., 2021;

Ravindra et al., 2022; Vellalassery et al., 2021; Deshpande et al., 2023). Consequently, we found a considerable influence of

agricultural biomass burning on observations at MHL during November 2017. Many biomass-burning activities were reported

in late October and early November 2017 (https://firms.modaps.eosdis.nasa.gov, last access: 14 April 2023). Atmospheric CO2

concentration increased up to 50 ppm, likely in response to the residue burning, with maximum concentration observed during430

5-13 November 2017 (see Fig. S8). STILT-derived footprints (Fig. S1) during November cover the northwest region of MHL,

indicating the possible influence of biomass burning on the observed variability at MHL. We find a considerable increase in

the MODIS-derived fire counts (MODIS-FIRMS, 2021) for October and November 2017 over the MHL footprint region (see

Fig. S13a). A sharp increase in the number of fire occurrences during late October and early November is very likely due to

agricultural waste burning after the harvest. We have conducted STILT simulations using biomass burning fluxes from Global435

Fire Assimilation System (GFAS) fluxes (Kaiser et al., 2012), and Fire INventory from NCAR version 2.5 (FINNv2.5) fluxes

(Wiedinmyer and Emmons, 2022; Wiedinmyer et al., 2023). STILT simulations using FINN (STILT-FINN) indicate some in-

fluence from biomass burning with a time-lead with the CO2 observations (see Fig. S13b). However, STILT simulations using

GFAS (STILT-GFAS) could not represent the CO2 contributions from biomass burning (Fig. S13b). The reanalysis products

also failed to capture these variability associated with biomass burning (see Fig. S8). Along with mixing height issues, mis-440

representation of emission fluxes, as seen here, can lead to significant errors in the simulated distribution of CO2. This result

shows the role of high-resolution biomass burning fluxes in representing CO2 variability at MHL.

6.2 Impact of biospheric uptake by crops on CO2 variability

Biospheric fluxes determine CO2 variability at NTL as indicated by the STILT simulated CO2bio component, which shows a

similar seasonal cycle as that of the CO2 observations (Fig. S14a). However, the simulated biospheric contribution changes445

from a negative (sink) to a positive (source) sign during October, while the model significantly overestimates the CO2 con-

centration (Fig. 4, Fig S14a). This overestimation corresponds to the misrepresentation of biospheric uptake of about 127 %

in the influence region during October-December by the VPRM model. The improved model’s correlation with observations

(correlation coefficient: 0.80) and RMSE values (reduced to ∼ 5 ppm) after adjusting the biospheric component (increasing

127 % of biospheric uptake during October-December in the total influence region) increases confidence in simulated transport450
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at NTL (see Additional material Fig. AM9-10). Thus, the above results demonstrate the potential of using NTL observations

via high-resolution inverse modelling to inform about the biospheric fluxes.

The variations in CO2bio over NTL are dominated by crop production (see CO2-NEE_CROP in Fig S14a). The variability in

the Normalized Difference Vegetation Index (NDVI, https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_

S2_SR_HARMONIZED, last access: 25 June 2023) in the footprint region of NTL, retrieved by Sentinel-2 Multispectral in-455

strument (MSI) shows a similar pattern as of the NTL CO2 observations (see Figs S2 and S14). The influence region of the

NTL site covers the Indian states Uttarakhand, Himachal Pradesh and parts of Punjab, Haryana and Uttar Pradesh. The close

association of NDVI patterns with the Kharif and Rabi cropping seasons over the region confirms the enhanced ecosystem

uptake due to agricultural activities (Fig. S14). For example, NDVI increased from July, peaking at the end of August and

remained high until October. The Kharif crop cultivation season usually starts in June-July, with a harvesting period from Oc-460

tober to November. Further, NDVI increased in December, with another peak in February. Rabi cultivation typically happens

around November; these crops are harvested in March-April. The lowest NDVI values for this region are associated with the

harvesting period in April-May. Hence, the decrease in CO2 concentration at NTL during August can be very likely due to the

strong uptake of Kharif crops from the upwind locations of the NTL station. A slight decrease of NTL CO2 concentration at

the end of December is in response to the biospheric uptake by Rabi crops (Umezawa et al., 2016). Nomura et al. (2021) also465

suggests the influence of cropping patterns over IGP on NTL observations. Noticeably, the simulated CO2 uptake component

(contribution from Gross Primary Production (GPP)) from crops shows a similar pattern as that of the Sentinel-2 derived NDVI

in the influence region of NTL (Fig. S14). At the same time, the simulated CO2 component due to the crop’s respiration also

shows a similar magnitude of contribution as of uptake, nearly neutralising the net biospheric CO2 contribution (Fig. S14a).

The overestimation of STILT simulations during October-November over NTL can thus be due to the considerable overestima-470

tion of respiration fluxes or slight underestimation of carbon uptake from crops. Similarly, MHL observations are influenced by

the Rabi cultivation in Punjab and IGP, showing a decrease in CO2 concentration during the December-January period, which

the models do not represent well. Note that the VPRM fluxes used in the current STILT simulations are not calibrated with

flux observations across India. An improved prediction of biospheric CO2 uptake and release can be achieved by utilising flux

observations from different ecosystems to calibrate the model parameters over India (e.g., Ravi et al., 2023) and by using CO2475

observations in the carbon data assimilation.

6.3 Relative contribution of CO2 components to variability

Here we discuss the contribution from different components, viz. background (CO2bck ), biospheric (CO2bio ) and anthropogenic

(CO2ant ) to the total CO2 concentration.

On an annual scale, observations from MHL, SDN, and NGP sites contain contributions from local fluxes (anthropogenic and480

biospheric components) by approximately 6 % of the total concentration (see Fig. 9). Regionally advected signals (background

component) mostly contribute (99 % of the total) to the NTL site. CO2ant and CO2bio show almost equal annual contributions in

magnitude to the total CO2 concentration in these sites. At the same time, the proportions of contributions to the total CO2 can

vary with seasons, such as winter (DJF), pre-monsoon (MAM), monsoon (JJA) and post-monsoon (SON) (see Additional ma-
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Figure 9. Variability in STILT CO2 emission components at different stations. For better comparison with other emission components, 380

ppm is reduced from background components. (a) Mohali daytime (11:00-16:00 local time) simulations (b) Nainital (c) Shadnagar (d) Nagpur

terial Fig. AM11-14) due to variations in atmospheric mixing and local fluxes. For instance, the reduction in CO2bio component485

over SDN and NGP during JJA can be very likely due to increased uptake and mixing during the monsoon period.

There are large differences in local fluxes that drive observed CO2 variability over different sites. MHL and NGP have CO2

variability dominated by anthropogenic activities (σ ≈ 5.4 to 13 ppm), while most of the CO2 variability at the NTL station,

situated in the foothills of the Himalayas, is caused by biospheric activities (σ = 5.5 ppm)(see Fig. 9). Annually, anthropogenic

and biospheric components almost equally contribute to SDN variations (σ ≈ 2.9 to 4.2 ppm).490

6.4 Influence of emission uncertainties on CO2 simulations

On estimating terrestrial carbon fluxes, inverse modelling systems usually assumes a known contribution from anthropogenic

emissions. However, this assumption would be problematic when we utilise observations near urban locations which are

strongly influenced by anthropogenic emissions. For instance, the mean CO2ant component at MHL varies as much as 4 ppm
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between different emission inventories (EDGAR:3.1 ppm, ODIAC:2.5 ppm and ICOS:7.1 ppm, see Figure 9). Similarly, an495

emission contribution difference of up to 5 ppm, as shown by SDN and NGP simulations, also has the potential to bias the

inverse flux estimations (Houweling et al., 2010; Schuh et al., 2019). At the same time, NTL shows the least differences among

emission contributions (EDGAR:1.3 ppm, ODIAC: 1.3 ppm and ICOS:3.8 ppm), where the above assumption is unlikely to

propagate large errors in terrestrial carbon estimations. The choice of emission inventory matters in the regional inverse systems

since they may control the majority of CO2 variability when urban sites are utilized. Our results demonstrate large differences500

among the CO2ant simulations utilising different inventories, indicating the knowledge gap in the emission estimations.

6.5 Sensitivity of simulations to initial CO2 distribution

STILT prescribes the initial concentration from global models to add the influences from the far-field fluxes to the site simula-

tions. The spatiotemporal details in the prescribed global model can thus influence the STILT CO2 simulations. The differences

between the two global reanalysis products used in our STILT simulations caused considerable inter-model mismatches in505

MHL (14 ppm) and NTL (9 ppm) (see Fig. 9, Background) while resulting in a negligible bias in SDN and NGP. Hence the

uncertainty in representing far-field influences may cause systematic bias in simulated CO2 concentrations, depending on the

sites.

6.6 An assessment of usability of CO2 in STILT-based inverse modelling

The disagreements between the observations and simulations largely arise from issues in representing mesoscale transport and510

local flux influences. Note that the STILT model can represent the seasonal variability at the observational sites (see Sect.

5.2) across India. Since improper accounting of CO2 variability biases the inverse estimations, examining the systematic and

unsystematic error terms (decoupled using Eq. (6) & (7), see Fig. 8) in STILT simulations is particularly relevant to assess the

readiness of our models to utilise these measurements in the carbon assimilation system.

The RMSEs for STILT simulations over NTL varies from 5.4 to 7.6 ppm, constituting about 52-60 % of the total RMSE.515

However, difficulty in capturing decreased CO2 associated with the enhanced biospheric contribution in NTL from August to

December (more details in Sect. 6.2) indicates the inadequate representation of ecosystem uptake in the model. For instance,

STILT-CS simulations could reproduce the observational variability from January to July with an RMSEs of ∼1.5 ppm. Be-

sides the growing period (August to December), the NTL model-observation mismatch reports only 14 % of the systematic

component in the total uncertainty (see Additional material Fig. AM15). Similarly, SDN and NGP simulations resulted in520

RMSEs of 1.6-3.6 ppm (4-34 % of total uncertainty) and 5.1-6.5 ppm (8-34 % of total uncertainty), respectively. The above

results indicate the high-resolution models’ ability to utilise the observations from NTL, SDN, and NGP in inverse modelling.

However, the MHL model-observation mismatch is more systematic (66-86 %). High RMSEs values are found over MHL

for most of the cases except for STILT-EGG4-ICOS simulations that utilised EGG4 products as initial & background condition

and ICOS anthropogenic emission fluxes (Fig. 8 a). These derived RMSE components and the higher percentage of systematic525

error contribution suggest further improvements in the models for potentially using MHL data in inversion. The EGG4 product

has higher spatiotemporal resolution compared to CarboScope, which may contribute to more realistic boundary conditions
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for the STILT simulation over MHL. Similarly, the ICOS inventory is the only emission flux used in this study incorporating

diurnal, weekly and monthly temporal variations. A reduced RMSEs (66 %) for models using the ICOS inventory suggests a

need for representing temporal variations in emission fluxes for improved model performance at MHL, where anthropogenic530

emissions play a significant role. Noteworthy is that the RMSEs values are in general higher for reanalysis products compared

to STILT simulations (Fig. 8), resulting in average values of 9.5 ppm, 10.4 ppm, 7.4 ppm and 11.1 ppm for NTL, SDN, NGP,

and MHL respectively. This indicates the advantage of using the STILT model over coarse-resolution models in utilizing these

observations.

7 Conclusions535

This study examines the potential of a high-resolution WRF-STILT modelling framework to simulate observed CO2 variability

over India. Further, we investigate the usability of these observations in inverse modelling when high-resolution models are

used. Observations exhibit strong variability at seasonal (7.5-9.2 ppm) and intra-seasonal scales (2-12 ppm). STILT shows

reasonable skill in representing the observed CO2 variability in these stations, though the model could not sufficiently capture

every fine-scale observed variation. STILT simulations agree better with the observed seasonal and diurnal variations than540

the global reanalysis products. Among the reanalysis products, EGG4 products showed reasonable skill in predicting CO2

variability over India.

STILT captures the seasonal variability associated with biospheric productivity in response to the availability of monsoon

rainfall. But the model needs to account for small-scale flux variations like biomass burning to represent MHL observations.

Similarly, both STILT and global models did not capture the sharp reduction CO2 concentration during August at the NTL545

station. This sharp reduction in CO2 concentration is due to the increased biospheric uptake by the crops over the IGP region.

The biospheric model could not represent this strong uptake, though the model reasonably well captured the seasonal variations

in the site. More biospheric flux observations over the region may enable us to further improve our vegetation models by

calibrating model parameters for different ecosystems.

The contribution of anthropogenic and biospheric components to the CO2 concentration varies with the station and season.550

NTL shows strong CO2 variability associated with biospheric fluxes. Over MHL, SDN, and NGP, anthropogenic flux variability

in CO2 concentration is dominant due to their proximity to cities. The impact of emission flux uncertainty in CO2 variations is

significant. CO2ant showed significant differences (up to 5 ppm) in their mean values and variability (up to 8 ppm) related to the

choice of the emission inventory in the STILT model. The uncertainties in emission fluxes and their impact on CO2 variations

indicate the importance of improving the inventories and their proper representation in the inverse modelling.555

Our results show that observations from all these four stations can be utilised in the carbon data assimilation system with

additional improvements in the modelling system. Except for NTL, the observations used in the study are modulated by influ-

ences from local fluxes in addition to background variations. Hence, most of these observations are suitable for constraining

carbon fluxes at local-to-urban scales. NTL observations can be used in the regional carbon estimations as the observations

showed significant influences from regional fluxes. Given the availability of high-resolution fluxes, we demonstrate that the560
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STILT simulations can reasonably simulate the CO2 variability over India. The availability of additional high-frequency obser-

vations representing the regional CO2 variability over India, comparable to the World Meteorological Organization standards

(https://gml.noaa.gov/ccl/co2_scale.html, last access: 12 June 2023) is necessary for improving our carbon estimates at scales

relevant to policymaking.

The source code for WRF model version 3.9.1.1 that we used for the simulations of the meteorological fields is available

from https://www2.mmm.ucar.edu/wrf/users/download/get_source.html (last access: 20 January 2022). STILT model source

codes are available from https://stilt-model.org/ (last access: 15 March 2022). The EGG4 reanalysis products are availed from

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-ghg-reanalysis-egg4?tab=form (last access: 10 February

2023). The CarboScope products used in this study are obtained from https://www.bgc-jena.mpg.de/CarboScope/ (last access:570

20 July 2020). The CarbonTracker data is accessed from https://doi.org/10.25925/20201008 (last access: 22 October 2022).

The EDGAR inventory data used in this study is from https://edgar.jrc.ec.europa.eu/dataset_ghg70 (last access: 19 January

2023). The ODIAC data is acquired from https://doi.org/10.17595/20170411.001 (last access: 23 February 2023). The ICOS

data is obtained from https://hdl.handle.net/11676/-XUdi3MSHmJxSVBKmPmrTBOn (last access: 9 March 2022). GFAS data

is downloaded from https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-fire-emissions-gfas?tab=form(last ac-575

cess: 24 November 2021). The Fire Inventory from NCAR version 2.5 is accessed from https://rda.ucar.edu/datasets/ds312.9/

dataaccess/ (last access: 3 July 2023). The Nanital CO2 observations are obtained from https://doi.org/10.17595/20220301.001

(last access: 10 December 2022), and Shadnagar and Nagpur observations are downloaded from https://bhuvan-app3.nrsc.

gov.in/data/download/index.php (last access: 12 December 2022). Additional materials for the manuscript are available from

https://zenodo.org/record/8143361 (last access: 13 July 2023, Thilakan and Pillai (2023)).580
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